Silica Microsphere WGMR-Based Kerr-OFC Light Source and Its Application for High-Speed IM/DD Short-Reach Optical Interconnects (2024)

Related Papers

Photonics

Microsphere-Based Optical Frequency Comb Generator for 200 GHz Spaced WDM Data Transmission System

Gerd Leuchs

Optical frequency comb (OFC) generators based on whispering gallery mode (WGM) microresonators have a massive potential to ensure spectral and energy efficiency in wavelength-division multiplexing (WDM) telecommunication systems. The use of silica microspheres for telecommunication applications has hardly been studied but could be promising. We propose, investigate, and optimize numerically a simple design of a silica microsphere-based OFC generator in the C-band with a free spectral range of 200 GHz and simulate its implementation to provide 4-channel 200 GHz spaced WDM data transmission system. We calculate microsphere characteristics such as WGM eigenfrequencies, dispersion, nonlinear Kerr coefficient with allowance for thermo-optical effects, and simulate OFC generation in the regime of a stable dissipative Kerr soliton. We show that by employing generated OFC lines as optical carriers for WDM data transmission, it is possible to ensure error-free data transmission with a bit er...

View PDF

The 4th International Conference "Quantum Optics and Photonics 2021", Riga, 22–23 April 2021 : Book of Abstracts

NSP FOTONIKA-LV on the Upwards Track

2021 •

Arnolds Ubelis

View PDF

Richard Schatz

We experimentally demonstrate an O-band single-lane 200 Gb/s intensity modulation direct detection (IM/DD) transmission system using a low-chirp, broadband, and high-power directly modulated laser (DML). The employed laser is an isolator-free packaged module with over 65-GHz modulation bandwidth enabled by a distributed feedback plus passive waveguide reflection (DFB+R) design. We transmit high baud rate signals over 20-km standard single-mode fiber (SSMF) without using any optical amplifiers and demodulate them with reasonably low-complexity digital equalizers. We generate and detect up to 170 Gbaud non-return-to-zero on-off-keying (NRZ-OOK), 112 Gbaud 4-level pulse amplitude modulation (PAM4), and 100 Gbaud PAM6 in the optical back-to-back configuration. After transmission over the 20-km optical-amplifier-free SSMF link, up to 150 Gbaud NRZ-OOK, 106 Gbaud PAM4, and 80 Gbaud PAM6 signals are successfully received and demodulated, achieving bit error rate (BER) performance below th...

View PDF

Applied Sciences

100 Gbaud On–Off Keying/Pulse Amplitude Modulation Links in C-Band for Short-Reach Optical Interconnects

Richard Schatz

We experimentally evaluate the high-speed on–off keying (OOK) and four-level pulse amplitude modulation (PAM4) transmitter’s performance in C-band for short-reach optical interconnects. We demonstrate up to 100 Gbaud OOK and PAM4 transmission over a 400 m standard single-mode fiber with a monolithically integrated externally modulated laser (EML) having 100 GHz 3 dB bandwidth with 2 dB ripple. We evaluate its capabilities to enable 800 GbE client-side links based on eight, and even four, optical lanes for optical interconnect applications. We study the equalizer’s complexity when increasing the baud rate of PAM4 signals. Furthermore, we extend our work with numerical simulations showing the required received optical power (ROP) for a certain bit error rate (BER) for the different combinations of the effective number of bits (ENOB) and extinction ratio (ER) at the transmitter. We also show a possibility to achieve around 1 km dispersion uncompensated transmission with a simple decisi...

View PDF

Micromachines

Nonlinear Optics in Microspherical Resonators

2020 •

Gualtiero Nunzi Conti

Nonlinear frequency generation requires high intensity density which is usually achieved with pulsed laser sources, anomalous dispersion, high nonlinear coefficients or long interaction lengths. Whispering gallery mode microresonators (WGMRs) are photonic devices that enhance nonlinear interactions and can be exploited for continuous wave (CW) nonlinear frequency conversion, due to their capability of confine light for long time periods in a very small volume, even though in the normal dispersion regime. All signals must be resonant with the cavity. Here, we present a review of nonlinear optical processes in glass microspherical cavities, hollow and solid.

View PDF

Journal of Lightwave Technology

Bridging the Terahertz Gap: Photonics-assisted Free-Space Communications from the Submillimeter-Wave to the Mid-Infrared

2022 •

Richard Schatz

View PDF

IEEE Photonics Technology Letters

Short Reach Communication Technologies for Client-side Optics beyond 400 Gbps

Richard Schatz

View PDF

Journal of Lightwave Technology

High-Speed 9.6-μm Long-Wave Infrared Free- Space Transmission with a Directly-Modulated QCL and a Fully-Passive QCD

Richard Schatz

View PDF

Applied Sciences

Cladding-Pumped Erbium/Ytterbium Co-Doped Fiber Amplifier for C-Band Operation in Optical Networks

E. Elsts

Space-division multiplexing (SDM) attracts attention to cladding-pumped optical amplifiers, but they suffer from a low pump power conversion efficiency. To address this issue, ytterbium (Yb3+) and erbium (Er3+) co-doping is considered as an effective approach. However, it changes the gain profile of Er3+-doped fiber amplifiers and induces the gain difference between optical wavelengths in the C-band, significantly limiting the effective band of the dense wavelength-division multiplexed (DWDM) system. This paper is devoted to a detailed study of a cladding-pumped Er3+/Yb3+ co-doped fiber amplifier (EYDFA) through numerical simulations aiming to identify a configuration, before assembling a similar EYDFA in our laboratory premises that ensures the desired performance. The simulation model is based on a commercial double cladding EYDF whose parameters are experimentally extracted and fed to the EYDFA setup for the system-level studies. We investigate the wavelength dependence of the am...

View PDF

Fibers

Raman Assisted Fiber Optical Parametric Amplifier for S-Band Multichannel Transmission System

2021 •

Jurgis Porins, Lilita Gegere, D. Redka

In this paper we present results from the study of optical signal amplification using Raman assisted fiber optical parametric amplifier with considerable benefits for S-band telecommunication systems where the use of widely used erbium-doped fiber amplifier is limited. We have created detailed models and performed computer simulations of combined Raman and fiber optical parametric amplification in a 16-channel 40 Gbps/channel wavelength division multiplexed transmission system. Achieved gain bandwidth, as well as transmission system parameters—signal-to-noise ratio and bit-error-ratio—were analyzed by comparing the Raman assisted fiber optical parametric amplifier to the single pump fiber optical parametric amplifier. Results show that the 3 dB gain bandwidth in the case of combined amplification is up to 0.2 THz wider with 1.9 dB difference between the lowest and highest gain.

View PDF
Silica Microsphere WGMR-Based Kerr-OFC Light Source and Its Application for High-Speed IM/DD Short-Reach Optical Interconnects (2024)

References

Top Articles
Latest Posts
Article information

Author: Edwin Metz

Last Updated:

Views: 6520

Rating: 4.8 / 5 (78 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Edwin Metz

Birthday: 1997-04-16

Address: 51593 Leanne Light, Kuphalmouth, DE 50012-5183

Phone: +639107620957

Job: Corporate Banking Technician

Hobby: Reading, scrapbook, role-playing games, Fishing, Fishing, Scuba diving, Beekeeping

Introduction: My name is Edwin Metz, I am a fair, energetic, helpful, brave, outstanding, nice, helpful person who loves writing and wants to share my knowledge and understanding with you.